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Abstract
Carbon uptake by the oceans and terrestrial biosphere regulates atmospheric carbon dioxide
concentration and affects Earth’s climate, yet global carbon cycle projections over the next
century are highly uncertain. Here, we quantify and isolate the sources of projection uncertainty
in cumulative ocean and terrestrial carbon uptake over 2006–2100 by performing an analysis of
variance on output from an ensemble of 12 Earth System Models. Whereas uncertainty in
projections of global ocean carbon accumulation by 2100 is <100 Pg C and driven primarily by
emission scenario, uncertainty in projections of global terrestrial carbon accumulation by 2100 is
>160 Pg C and driven primarily by model structure. To statistically reduce uncertainty in
terrestrial carbon projections, we devise schemes to weight the models based on their ability to
represent the observed change in carbon accumulation over 1959–2005. The weighting schemes
incrementally reduce uncertainty to a minimum value of 125 Pg C in 2100, but this reduction
requires an impractical observational constraint. We suggest that a focus on reducing multi-
model spread may not make terrestrial carbon cycle projections more reliable, and instead
advocate for accurate observations, improved process understanding, and a multitude of
modeling approaches.
1. Introduction

The accumulation of carbon in the ocean and
terrestrial biosphere reduces the atmospheric carbon
dioxide (CO2) burden and thus the influence of
anthropogenic carbon emissions on global climate
(Ciais and Sabine 2013). Observations and models
suggest that the ocean has accumulated 170 Pg C since
1750 (Le Quéré et al 2015). This uptake of CO2 by the
ocean is primarily driven by the fast response of air-sea
gas exchange to increasing CO2 in the atmosphere
and the slow transport of this CO2 from the surface
into the ocean interior (Graven et al 2012). In contrast,
the terrestrial biosphere is estimated to have lost 25 Pg
C since 1750, the sum of 190 Pg C emitted from land
use change and 165 Pg C accumulated by terrestrial
ecosystems (Le Quéré et al 2015). Models and
observations suggest that the accumulation or loss
of carbon by these reservoirs is changing with time.
For example, from the decade of the 1960s to the most
© 2017 IOP Publishing Ltd
recent decade (2005–2014), the rate of ocean carbon
uptake increased from 1.1 to 2.6 Pg C yr�1 , land use
change emissions decreased from 1.5 to 0.9 Pg C yr�1 ,
and the residual land sink grew from1.7 to 3.0 PgCyr�1

(Le Quéré et al 2015).
Future changes in the accumulation of carbon in

the ocean and terrestrial biosphere will affect
atmospheric CO2 concentration and thus climate,
yet many studies report high uncertainty in projec-
tions of air-sea CO2 flux, land use change emissions,
and net terrestrial biospheric production over the
coming century (Friedlingstein et al 2006, Arora et al
2013, Jones et al 2013, Hoffman et al 2014, Hewitt et al
2016, Lovenduski et al 2016). Quantifying the relative
importance of the sources of uncertainty in these
projections, namely internal variability, emission
scenario, and model structure, is a necessary step to
realizing reductions in projection uncertainty (Haw-
kins and Sutton 2009). Internal variability is the
unforced climate variability arising from internal
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climate processes (e.g. El Niño-Southern Oscillation).
Emission scenario uncertainty is caused by unknowns
in the future behavior of society, while model
structural uncertainty is a product of different
representations of the physical climate system and
the biology of the biosphere across a range of Earth
System Models.

Here, we use output from models participating in
the 5th Coupled Model Intercomparison Project
(CMIP5) to quantify and assess the relative impor-
tance of the sources of projection uncertainty in
globally-integrated, cumulative uptake of carbon by
the ocean and terrestrial biosphere over the next
century. Results from this analysis are used to inform a
strategy for reductions in terrestrial carbon uptake
projection uncertainty.
2. Methods
2.1. CMIP5 models
Weanalyzeoutput from12CMIP5 earth systemmodels
that simulated the historical period (1850–2005) and
the future period (2006–2100) under a common set of
anthropogenic forcings, including the historical atmo-
spheric CO2 concentration and the projected atmo-
spheric CO2 concentration from a collection of 4
emission scenarios (Representative Concentration
Pathways, or RCPs). Table S1 (available at stacks.iop.
org/ERL/12/044020/mmedia) shows the CMIP5 mod-
els analyzed in this study, and lists the RCP simulations
conducted for each model.

2.2. Analysis of variance
We analyze future projections of ocean and terrestrial
carbon uptake from the CMIP5 models to quantify
their uncertainty and to partition this uncertainty into
three sources: internal variability, emission scenario,
and model structure.

The globally-integrated, cumulative carbon uptake
by land or ocean since 2006, T(m, s, t), is a function of
model m, emission scenario s, and time t. Each
individual prediction, T(m, s, t) was fit with a 4th
order polynomial over the years 2006–2100, F(m, s, t),
resulting in a timeseries of residuals R(m, s, t),

Rðm; s; tÞ ¼ Tðm; s; tÞ � Fðm; s; tÞ: ð1Þ
The projection uncertainty is quantified on the

basis of ensemble spread, or the standard deviation of
all the projections in a given year,

UðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varm;s

�
Tðm; s; tÞ

�r
; ð2Þ

where varm,s is the variance across all models and
scenarios.

We use the method outlined in Hawkins and
Sutton (2009) to quantify the fractional contribution
of the three sources of projection uncertainty. The total
variance, U(t)2 is equal to the sum of the variance due
2

to internal variability, U 2
V , the variance due to

emission scenario, US(t)
2, and the variance due to

model structure, UM(t)
2,

UðtÞ2 ¼ U 2
V þ USðtÞ2 þ UMðtÞ2: ð3Þ

The variance due to internal climate variability is
calculated as

U 2
V ¼

XNem

n¼1

Wmvart
�
Rðm; s; tÞ

�
; ð4Þ

where vart is the temporal variance, Nem is the total
number of ensemble members in the CMIP5 suite
(Nem ¼ 40), and Wm is a normalized weight for each
model (see next section). This method for calculating
internal variance assumes that variance is appropri-
ately captured by the residuals from a polynomial fit to
the projections, as described in Hawkins and Sutton
(2009). Other studies have estimated internal variabil-
ity in CO2 uptake based on model ensembles
(Lombardozzi et al 2014, Lovenduski et al 2016).
Our method further assumes that the internal variance
does not change with time and is unaffected by
emission scenario. Finally, by averaging the internal
variance across all CMIP5 models, our method masks
the subtle differences in internal variance across a
range of model structures that may be prevalent in
multi-century preindustrial control simulations of the
same models (Resplandy et al 2015).

The variance due to emission scenario is the cross-
scenario variance (vars ) of the weighted multi-model
mean forced signal:

USðtÞ2 ¼ vars
�XNm

n¼1

WmFðm; s; tÞ
�
; ð5Þ

where Nm is the number of ensemble members that
simulated a given emission scenario (NRCP2:6

m ¼ 9,
NRCP4:5

m ¼ 12, NRCP6:0
m ¼ 7, NRCP8:5

m ¼ 12).
The variance due to model structure is the multi-

scenario mean of the weighted intermodel variance in
the forced signal:

UMðtÞ2 ¼ 1

Ns

XNs

s¼1

varWm

�
Fðm; s; tÞ

�
; ð6Þ

where Ns is the number of scenarios in the CMIP5
suite (Ns ¼ 4), and varWm is the weighted variance.

The fractional variance is then
U 2

V

UðtÞ2,
USðtÞ2
UðtÞ2 , andUM ðtÞ2

UðtÞ2 for internal variability, emission scenario, and
model structure, respectively. In this simple statistical
framework, the sum of three uncertainty terms equals
the total uncertainty, since we assume that the model-
scenario interaction term is negligible, as in Hawkins
and Sutton (2009).
2.3. Weighting schemes
We introduce weighting schemes to our analysis of
variance to evaluate the sensitivity of terrestrial carbon
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Figure 1. Projections of cumulative, globally integrated carbon uptake by the ocean and land from 2006 to 2100, and the associated
uncertainty and sources of uncertainty in the projections.
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projection uncertainty to model structure. Both
unweighted and weighted uncertainty estimates of
terrestrial carbon uptake are presented.

We develop 7 weighting schemes that weight the
models by their ability to simulate observed changes in
terrestrial carbon uptake over 1959–2005. Models that
successfully reproduce past changes are given higher
weights in all schemes. Schemes are based on the
probability density of normally-distributed, linear
trends in cumulative carbon uptake over 1959–2005,

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p e
�ðx�mÞ2

2s2 ; ð7Þ

where m and s represent the mean and standard
deviation, respectively, of the modeled trends in
cumulative terrestrial carbon uptake over 1959–2005.
Each weighting scheme (WS) uses different values of m
and s, derived from trends from a subset of models in
thecorrespondingmodel tier(s) (table S1). Forexample,
WS 1 uses m and s values derived from Tier 1 models,
WS 2 uses m and s values derived from Tier 1 and 2
models, and so on. WS 7 uses m and s values
derived from all of the models (Tiers 1 through 7).
Models were categorized into tiers according to the
absolute value of the difference between the modeled
trend and the observationally-based trend over this
period (table S1).

Each model is given a weight, wm, according to the
resulting probability density ( f (x)) of the modeled
trends in cumulative land uptake for a given weighting
3

scheme. These weights are expressed as normalized
weights, Wm, in our analysis of variance,

Wm ¼ wmP
m wm

: ð8Þ
3. Results and discussion

The time series of globally-integrated, cumulative
ocean carbon uptake from 2006 to 2100 reveals a
growing ocean carbon sink for all CMIP5 ensemble
members, with higher uptake corresponding to higher
CO2 concentration pathways (figure 1(a)), consistent
with previous studies (Jones et al 2013). The
uncertainty in these projections grows exponentially
from 0 Pg C in 2006 to 94 Pg C in 2100 (figure 1(c)),
reflecting greater divergence in the projections at long
prediction lead times. The analysis of variance reveals
that emission scenario is the dominant source of
uncertainty in the latter half of the century, with model
structure playing an important role in the early part of
the century (figure 1(e)), when overall uncertainty is
low. These findings are similar to those from previous
studies that report on annual-mean (Lovenduski et al
2016) and decadal-mean (Hewitt et al 2016) air-sea
CO2 flux projections. We note, however, that the roles
of internal variability andmodel structural uncertainty
in ocean carbon uptake highlighted in previous studies
(Lovenduski et al 2016, McKinley et al 2016,
Resplandy et al 2015) are small in our analysis, owing
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to our focus on global and cumulative, rather than
regional mean or annual-mean CO2 fluxes.

The evolution of globally-integrated, cumulative
terrestrial carbon uptake over the next century
(figure 1(b)) depends on the evolution of land use
change emissions and terrestrial ecosystem produc-
tion. While some CMIP5 ensemble members show an
accumulation of carbon in the terrestrial biosphere,
others show a loss of carbon over 2006–2100
(figure 1(b)). The uncertainty in these projections
increases linearly from 0 Pg C in 2006 to 163 Pg C in
2100 (figure 1(d )), reflecting greater divergence than
the ocean projections for all prediction lead times.
Model structure accounts for ∼80% of the projection
uncertainty in terrestrial carbon uptake for all
prediction lead times, with emission scenario
and internal variability playing much smaller roles
(figure 1(f )), consistent with a previous study of
decadal-mean terrestrial carbon fluxes (Hewitt et al
2016). Thus, in the terrestrial biosphere, we have
observed higher overall projection uncertainty and an
important role for model structural uncertainty that
were not evident in our analysis of global ocean carbon
accumulation.

What steps can we take to reduce uncertainty in
projections of ocean and land carbon accumulation?
In the global ocean, our analysis points to a clear role
for emission scenario uncertainty in the latter half of
the century, when overall uncertainty is high. Thus, a
significant reduction in uncertainty here is principally
attainable by narrowing the uncertainty in future
emission trajectories. While Dunne (2016) argues that
recently proposed climate stabilization targets will lead
to natural reductions in scenario uncertainty, this
source of uncertainty is nevertheless dependent on
future societal behavior and technological advance-
ments and largely outside the realm of physical science.
In the terrestrial biosphere, however, uncertainty is
dominated by model structure, a source of uncertainty
that is potentially reducible through advancements in
ecological theory and modeling. Hoffman et al (2014)
suggest that significant decreases in model structural
uncertainty may be achievable through (1) closer
coordination among modeling centers, and (2)
systematic evaluation of models through comparison
with observations. In their study, they use historical
observations of atmospheric CO2 from Mauna Loa to
constrain CMIP5 model predictions of atmospheric
CO2, yielding a considerably narrowed distribution of
potential atmospheric CO2 concentrations by the end
of the century. Here, we attempt a similar exercise for
terrestrial biosphere carbon accumulation.

Each year, the Global Carbon Project (GCP)
publishes a plausible history of land use change and
terrestrial carbon fluxes that is based on observations
of emissions, atmospheric growth rate, and ocean
uptake and can be used to address model fidelity and
inform model projections (Le Quéré et al 2015,
Houghton et al 2012). The GCP dataset indicates an
4

increase in cumulative land uptake over 1959–2005
(figure 2(a)), with a linear trend of 0.49 Pg C yr�1

(r 2 ¼ 0.91, figure 2(b)). This observational estimate is
bounded by the cumulative uptake estimated from the
CMIP5models over the same period (figure 2(a)), such
that the GCP trend falls close to the middle of a near-
normal distribution of linear trends in the CMIP5
models (figure 2(b)). These historical trends form the
basis of schemes that we devise to weight the CMIP5
models based on their ability to represent past observed
changes (see Methods, figure 2(c)). The most extreme
weighting scheme (WS 1) gives all the weight to a few of
the best-performing models, while the least extreme
weighting scheme (WS 7) gives near-equal weight to all
the models (figure 2(c)). The most extreme weighting
schemes are thus likely to yield the largest reductions in
model structural uncertainty and overall projection
uncertainty in terrestrial carbon uptake.

Terrestrial carbon uptake projection uncertainty
decreases incrementally from 163 Pg C in 2100 with no
weighting scheme to 125 Pg C in 2100 when we apply
the most extreme weighting scheme (WS 1) to our
analysis of variance (figure 3(a)), suggesting that a
single observational constraint of past model perfor-
mance can be used to inform future projections and
lower overall projection uncertainty. We note,
however, that terrestrial carbon uptake projection
uncertainty under the most extreme model weighting
scheme (WS 1) is >25% larger than that of the global
ocean at the end of the century. The primary source of
projection uncertainty on land is model structure for
all but the most extreme weighting scheme (WS 1),
where emission scenario becomes the primary source
of uncertainty after ∼2040 (figure 3(b)). Further
statistical reductions in model structural uncertainty
beyond the weighting schemes presented here require
unrealistic measures, such as excluding all but one
model from the analysis of variance (not shown).

Our analysis indicates that a meaningful reduction
inmodel structural and overall uncertainty in terrestrial
carbonuptakeprojections isobtainableonlywitha fairly
impractical observational constraint. For example, in
order to allow emission scenario to be the dominant
end-of-century source ofuncertainty, wehad todesign a
model weighting scheme (WS 1) that excluded all but
2models (HadGEM2-CC andHadGEM2-ES) from the
analysis of variance. In fact, however, these two models
differ only in the inclusion of tropospheric chemistry in
HadGEM2-ES, which has little impact on the simulated
carbon cycle (Martin et al 2011). Inclusion of just two
additional models (WS 2) causes model structural
uncertainty to exceed scenario uncertainty for all
prediction lead times (figure 3(c)).

Observational constraints have previously been
advocated as ameans to reducemodel uncertainty in the
terrestrial biosphere (Randerson et al 2009, Luo et al
2012, Cox et al 2013, Schimel et al 2015), however, one
needs to consider the uncertainty in the observational
constraint itself. Here, we use the GCP estimate of
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Figure 2. (a) Cumulative land carbon uptake over 1959–2005 for the CMIP5models and an observationally-based estimate (Le Quéré
et al 2015). (b) Histogram of the linear trend in cumulative land uptake from 1959 to 2005 in the CMIP5 models. Dashed vertical line
shows the trend based on observations. (c) Weighting schemes used to reduce projection uncertainty in terrestrial carbon uptake.
Weighting schemes are based on the probability density of normally-distributed trends in cumulative carbon uptake over 1959–2005
(see Methods). The most extreme weighting scheme (WS 1) gives all the weight to a few models; the least extreme weighting scheme
(WS 7) gives near-equal weight to all the models. Dashed vertical line as in (b).
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net land carbon flux with a reported uncertainty of 0.9
Pg C yr�1 in recent decades (Ciais and Sabine 2013,
Schimel et al 2015). Only one CMIP5 model (IPSL-
CM5B-LR; table S1) falls outside the range of
uncertainty in the observed trend in cumulative land
uptake over the 1959–2005 period (0.49 ± 0.9 Pg C
yr�1). Constrainingmodels to anuncertain observation
may not increase their predictive skill.

Improvements to model structure require deep
knowledge of the real-world processes being repre-
sented by the models. Net land carbon flux is a
complex quantity in an earth system model, as it
depends on many different parameters that together
determine land use change, drought, fire, and CO2

fertilization fluxes and their sensitivities to changes in
5

climate. Thus, even models that strongly agree with
historical observations can exhibit divergent projec-
tions in the future (Knutti and Hegerl 2008).

Current research suggests that the large structural
uncertainty in projections of terrestrial carbon fluxes
from Earth SystemModels is driven both by differences
in simulated climate, and by the challenge of
representing life in these models, with the rich diversity
of lifeforms and complexity of ecological systems. Even
when forced with the same climate, the current
generation of models give divergent depictions of the
carbon cycle (Sitch et al 2015). Previous studies have
demonstrated large spread within a single model
structure arising from parameter uncertainty (Booth
et al 2012, 2013). Yet there is the added difficulty of



fra
ct

io
n 

of
 to

ta
l v

ar
ia

nc
e 

(%
)

0

20

40

60

80

100
(b) WS 1 internal

scenario
model

un
ce

rta
in

ty
 (P

g 
C

)

0

50

100

150

200
(a) WS 1

unweighted

WS 2
WS 3
WS 4
WS 5
WS 6
WS 7

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0

20

40

60

80

100
(c) WS 2

fra
ct

io
n 

of
 to

ta
l v

ar
ia

nc
e 

(%
)
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mathematically representing ecological processes. Even
whenmodels utilize the same theoretical underpinnings
of photosynthesis, their varying numerical implemen-
tation of that theory leads to divergent simulations
(Rogers et al 2017). Other studies have focused on
structural uncertainty within a single model and have
identified photosynthetic and respiratory temperature
acclimation, biological nitrogen fixation, and micro-
bially-based soil organic matter dynamics as key
uncertainties in carbon cycle projections over the
twenty-first century (Lombardozzi et al 2015, Wieder
et al 2015a, 2015b). Nitrogen limitation of terrestrial
productivity is a critical determinant of carbon cycle
projections, but our understanding of how to model
biogeochemical processes is poor (Zaehle et al 2014,
Medlyn et al 2015), as is our ability to model land use
emissions (Lawrence et al 2016) and wildfire (Hantson
et al 2016). Ecological complexity necessitates a
multitude of modeling approaches to capture the range
of possible outcomes. The focus on reducing multi-
model spread does not necessarily make carbon cycle
projectionsmore reliable andmay, in fact, limit scientific
progress.
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